Hi all,
I have a samsung nand device K9F1208UOM which is being mounted
perfectly and shows me erasedblocks when i check the proc entry. But
when i try to create/copy etc a file on to the partition i run out of
memory . Below is the log and my nand.c file which i believe tries to
create the directory but ends up writing to all blocks cause after
the mkdir command the proc entry shows me only 5 eraseblocks .
[root@manav /]#mount -t yaffs /dev/mtdblock3 /mnt/yaffs/
yaffs: dev is 7939 name is "unknown-char(31,3)"
yaffs: dev is 7939 name is "unknown-char(31,3)"
[root@manav /]#df
Filesystem 1k-blocks Used Available Use% Mounted on
rootfs 31488 9312 22176 30% /
/dev/mtdblock2 31488 9312 22176 30% /
/dev/mtdblock3 16368 308 16060 2% /mnt/yaffs
[root@manav /]#cat /proc/yaffs
YAFFS built:Nov 4 2004 14:36:33
$Id: yaffs_fs.c,v 1.1.6.2 2003/11/08 10:33:14 bushi Exp $
$Id: yaffs_guts.c,v 1.1.6.4 2004/03/29 12:09:30 bushi Exp $
Device yaffs
startBlock......... 1
endBlock........... 1023
chunkGroupBits..... 0
chunkGroupSize..... 1
nErasedBlocks...... 1003
nTnodesCreated..... 100
nFreeTnodes........ 87
nObjectsCreated.... 100
nFreeObjects....... 90
nFreeChunks........ 32316
nPageWrites........ 0
nPageReads......... 0
nBlockErasures..... 0
nGCCopies.......... 0
garbageCollections. 0
passiveGCs......... 0
nRetriedWrites..... 0
nRetireBlocks...... 0
eccFixed........... 0
eccUnfixed......... 6
tagsEccFixed....... 0
tagsEccUnfixed..... 1018
cacheHits.......... 0
nDeletedFiles...... 0
nUnlinkedFiles..... 0
nBackgroudDeletions 0
useNANDECC......... 0
cd /mnt/yaffs/
[root@manav yaffs]#ls
lost+found
[root@manav yaffs]#mkdir test
Writing data without ECC to NAND-FLASH is not recommended ........
:
:
Writing data without ECC to NAND-FLASH is not recommended
mkdir: Cannot create directory `test': Cannot allocate memory
[root@manav yaffs]#cat /proc/yaffs
YAFFS built:Nov 4 2004 14:36:33
$Id: yaffs_fs.c,v 1.1.6.2 2003/11/08 10:33:14 bushi Exp $
$Id: yaffs_guts.c,v 1.1.6.4 2004/03/29 12:09:30 bushi Exp $
Device yaffs
startBlock......... 1
endBlock........... 1023
chunkGroupBits..... 0
chunkGroupSize..... 1
nErasedBlocks...... 5
nTnodesCreated..... 100
nFreeTnodes........ 87
nObjectsCreated.... 100
nFreeObjects....... 90
nFreeChunks........ 32316
nPageWrites........ 65586
nPageReads......... 31655
nBlockErasures..... 0
nGCCopies.......... 0
garbageCollections. 0
passiveGCs......... 0
nRetriedWrites..... 31934
nRetireBlocks...... 998
eccFixed........... 0
eccUnfixed......... 6
tagsEccFixed....... 0
tagsEccUnfixed..... 1018
cacheHits.......... 0
nDeletedFiles...... 0
nUnlinkedFiles..... 0
nBackgroudDeletions 0
useNANDECC......... 0
I have disabled both printk (KERN_WARNING "Writing data without ECC
to NAND-FLASH is not recommended\n");
and printk (KERN_WARNING "Reading data from NAND FLASH without ECC is
not recommended\n"); in nand.c but to no avail . My kernel is 2.4.19
and i have tried enabling both -DCONFIG_YAFFS_USE_NANDECC and
DCONFIG_YAFFS_USE_OLD_MTD in all combo's. Any suggestions would be
great .
/*
* drivers/mtd/nand.c
*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/tech/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002 Thomas Gleixner (tglx@linutronix.de)
*
* 10-29-2001 Thomas Gleixner (tglx@linutronix.de)
* - Changed nand_chip structure for controlline function to
* support different hardware structures (Access to
* controllines ALE,CLE,NCE via hardware specific function.
* - exit out of "failed erase block" changed, to avoid
* driver hangup
* - init_waitqueue_head added in function nand_scan !!
*
* 01-30-2002 Thomas Gleixner (tglx@linutronix.de)
* change in nand_writev to block invalid vecs entries
*
* 02-11-2002 Thomas Gleixner (tglx@linutronix.de)
* - major rewrite to avoid duplicated code
* common nand_write_page function
* common get_chip function
* - added oob_config structure for out of band layouts
* - write_oob changed for partial programming
* - read cache for faster access for subsequent reads
* from the same page.
* - support for different read/write address
* - support for device ready/busy line
* - read oob for more than one page enabled
*
* 02-27-2002 Thomas Gleixner (tglx@linutronix.de)
* - command-delay can be programmed
* - fixed exit from erase with callback-function enabled
*
* 03-21-2002 Thomas Gleixner (tglx@linutronix.de)
* - DEBUG improvements provided by Elizabeth Clarke
* (eclarke@aminocom.com)
* - added zero check for this->chip_delay
*
* 04-03-2002 Thomas Gleixner (tglx@linutronix.de)
* - added added hw-driver supplied command and wait functions
* - changed blocking for erase (erase suspend enabled)
* - check pointers before accessing flash provided by
* John Hall (john.hall@optionexist.co.uk)
*
* 04-09-2002 Thomas Gleixner (tglx@linutronix.de)
* - nand_wait repaired
*
* 04-28-2002 Thomas Gleixner (tglx@linutronix.de)
* - OOB config defines moved to nand.h
*
* 08-01-2002 Thomas Gleixner (tglx@linutronix.de)
* - changed my mailaddress, added pointer to tech/nand.html
*
* 08-07-2002 Thomas Gleixner (tglx@linutronix.de)
* forced bad block location to byte 5 of OOB, even if
* CONFIG_MTD_NAND_ECC_JFFS2 is not set, to prevent
* erase /dev/mtdX from erasing bad blocks and destroying
* bad block info
*
* 08-10-2002 Thomas Gleixner (tglx@linutronix.de)
* Fixed writing tail of data. Thanks to Alice Hennessy
* <ahennessy@mvista.com>.
*
* 08-10-2002 Thomas Gleixner (tglx@linutronix.de)
* nand_read_ecc and nand_write_page restructured to support
* hardware ECC. Thanks to Steven Hein (ssh@sgi.com)
* for basic implementation and suggestions.
* 3 new pointers in nand_chip structure:
* calculate_ecc, correct_data, enabled_hwecc
* forcing all hw-drivers to support page cache
* eccvalid_pos is now mandatory
*
* 08-17-2002 tglx: fixed signed/unsigned missmatch in write.c
* Thanks to Ken Offer <koffer@arlut.utexas.edu>
*
* 08-29-2002 tglx: use buffered read/write only for non pagealigned
* access, speed up the aligned path by using the fs-buffer
* reset chip removed from nand_select(), implicit done
* only, when erase is interrupted
* waitfuntion use yield, instead of schedule_timeout
* support for 6byte/512byte hardware ECC
* read_ecc, write_ecc extended for different oob-layout
* selections: Implemented NAND_NONE_OOB, NAND_JFFS2_OOB,
* NAND_YAFFS_OOB. fs-driver gives one of these constants
* to select the oob-layout fitting the filesystem.
* oobdata can be read together with the raw data, when
* the fs-driver supplies a big enough buffer.
* size = 12 * number of pages to read (256B pagesize)
* 24 * number of pages to read (512B pagesize)
* the buffer contains 8/16 byte oobdata and 4/8 byte
* returncode from calculate_ecc
* oobdata can be given from filesystem to program them
* in one go together with the raw data. ECC codes are
* filled in at the place selected by oobsel.
*
* 09-04-2002 tglx: fixed write_verify (John Hall (john.hall@optionexist.co.uk))
*
* 11-11-2002 tglx: fixed debug output in nand_write_page
* (John Hall (john.hall@optionexist.co.uk))
*
* 11-25-2002 tglx: Moved device ID/ manufacturer ID from nand_ids.h
* Splitted device ID and manufacturer ID table.
* Removed CONFIG_MTD_NAND_ECC, as it defaults to ECC_NONE for
* mtd->read / mtd->write and is controllable by the fs driver
* for mtd->read_ecc / mtd->write_ecc
* some minor cleanups
*
* 12-05-2002 tglx: Dave Ellis (DGE@sixnetio) provided the fix for
* WRITE_VERIFY long time ago. Thanks for remembering me.
*
* 02-14-2003 tglx: Reject non page aligned writes
* Fixed ecc select in nand_write_page to match semantics.
*
* 02-18-2003 tglx: Changed oobsel to pointer. Added a default oob-selector
*
* 02-18-2003 tglx: Implemented oobsel again. Now it uses a pointer to
+ a structure, which will be supplied by a filesystem driver
* If NULL is given, then the defaults (none or defaults
* supplied by ioctl (MEMSETOOBSEL) are used.
* For partitions the partition defaults are used (mtdpart.c)
*
* 06-04-2003 tglx: fix compile errors and fix write verify problem for
* some chips, which need either a delay between the readback
* and the next write command or have the CE removed. The
* CE disable/enable is much faster than a 20us delay and
* it should work on all available chips.
*
* $Id: nand.c,v 1.57 2003/10/15 13:23:56 dwmw2 Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/compatmac.h>
#include <linux/interrupt.h>
#include <asm/io.h>
/*
* NAND low-level MTD interface functions
*/
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs,
unsigned long count, loff_t to, size_t * retlen);
static int nand_writev_ecc (struct mtd_info *mtd, const struct iovec *vecs,
unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync (struct mtd_info *mtd);
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, struct nand_oobinfo *oobsel);
static u_char nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return readb(this->IO_ADDR_R);
}
static void nand_write_byte(struct mtd_info *mtd, u_char byte)
{
struct nand_chip *this = mtd->priv;
writeb(byte, this->IO_ADDR_W);
}
static void nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
switch(chip) {
case -1:
this->hwcontrol(mtd, NAND_CTL_CLRNCE);
break;
case 0:
this->hwcontrol(mtd, NAND_CTL_SETNCE);
break;
default:
BUG();
}
}
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
writeb(buf[i], this->IO_ADDR_W);
}
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
buf[i] = readb(this->IO_ADDR_R);
}
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
if (buf[i] != readb(this->IO_ADDR_R))
return i;
return 0;
}
/* Appropriate chip should already be selected */
static int nand_block_bad(struct mtd_info *mtd, unsigned long page)
{
struct nand_chip *this = mtd->priv;
this->cmdfunc (mtd, NAND_CMD_READOOB, NAND_BADBLOCK_POS, page);
if (this->read_byte(mtd) != 0xff)
return 1;
return 0;
}
/*
* Send command to NAND device
*/
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->oobblock) {
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
this->write_byte(mtd, readcmd);
}
this->write_byte(mtd, command);
/* Set ALE and clear CLE to start address cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
if (column != -1 || page_addr != -1) {
this->hwcontrol(mtd, NAND_CTL_SETALE);
/* Serially input address */
if (column != -1)
this->write_byte(mtd, column);
if (page_addr != -1) {
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
/* One more address cycle for higher density devices */
if (mtd->size & 0x0c000000)
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
udelay(this->chip_delay);
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & 0x40));
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);
return;
}
}
/* wait until command is processed */
while (!this->dev_ready(mtd));
}
/*
* Get chip for selected access
*/
static inline void nand_get_chip (struct nand_chip *this, struct mtd_info *mtd, int new_state, int *erase_state)
{
DECLARE_WAITQUEUE (wait, current);
/*
* Grab the lock and see if the device is available
* For erasing, we keep the spinlock until the
* erase command is written.
*/
retry:
spin_lock_bh (&this->chip_lock);
if (this->state == FL_READY) {
this->state = new_state;
if (new_state != FL_ERASING)
spin_unlock_bh (&this->chip_lock);
return;
}
#if 0 /* This was broken. And of dubious utility */
if (this->state == FL_ERASING) {
if (new_state != FL_ERASING) {
this->state = new_state;
spin_unlock_bh (&this->chip_lock);
this->select_chip(mtd, 0); /* select in any case */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
return;
}
}
#endif
set_current_state (TASK_UNINTERRUPTIBLE);
add_wait_queue (&this->wq, &wait);
spin_unlock_bh (&this->chip_lock);
schedule ();
remove_wait_queue (&this->wq, &wait);
goto retry;
}
/*
* Wait for command done. This applies to erase and program only
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long timeo = jiffies;
int status;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
spin_lock_bh (&this->chip_lock);
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
while (time_before(jiffies, timeo)) {
/* Check, if we were interrupted */
if (this->state != state) {
spin_unlock_bh (&this->chip_lock);
return 0;
}
if (this->dev_ready) {
if (this->dev_ready(mtd))
break;
}
if (this->read_byte(mtd) & 0x40)
break;
spin_unlock_bh (&this->chip_lock);
yield ();
spin_lock_bh (&this->chip_lock);
}
status = (int) this->read_byte(mtd);
spin_unlock_bh (&this->chip_lock);
return status;
}
/*
* Nand_page_program function is used for write and writev !
* This function will always program a full page of data
* If you call it with a non page aligned buffer, you're lost :)
*/
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, struct nand_oobinfo *oobsel)
{
int i, status;
u_char ecc_code[6], *oob_data;
int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
int *oob_config = oobsel->eccpos;
/* pad oob area, if we have no oob buffer from fs-driver */
if (!oob_buf) {
oob_data = &this->data_buf[mtd->oobblock];
for (i = 0; i < mtd->oobsize; i++)
oob_data[i] = 0xff;
} else
oob_data = oob_buf;
/* Send command to begin auto page programming */
this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
/* Write out complete page of data, take care of eccmode */
switch (eccmode) {
/* No ecc and software ecc 3/256, write all */
case NAND_ECC_NONE:
//printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
this->write_buf(mtd, this->data_poi, mtd->oobblock);
break;
case NAND_ECC_SOFT:
this->calculate_ecc(mtd, &this->data_poi[0], &(ecc_code[0]));
for (i = 0; i < 3; i++)
oob_data[oob_config[i]] = ecc_code[i];
/* Calculate and write the second ECC for 512 Byte page size */
if (mtd->oobblock == 512) {
this->calculate_ecc(mtd, &this->data_poi[256], &(ecc_code[3]));
for (i = 3; i < 6; i++)
oob_data[oob_config[i]] = ecc_code[i];
}
this->write_buf(mtd, this->data_poi, mtd->oobblock);
break;
/* Hardware ecc 3 byte / 256 data, write first half, get ecc, then second, if 512 byte pagesize */
case NAND_ECC_HW3_256:
this->enable_hwecc(mtd, NAND_ECC_WRITE); /* enable hardware ecc logic for write */
this->write_buf(mtd, this->data_poi, mtd->eccsize);
this->calculate_ecc(mtd, NULL, &(ecc_code[0]));
for (i = 0; i < 3; i++)
oob_data[oob_config[i]] = ecc_code[i];
if (mtd->oobblock == 512) {
this->enable_hwecc(mtd, NAND_ECC_WRITE); /* enable hardware ecc logic for write*/
this->write_buf(mtd, &this->data_poi[mtd->eccsize], mtd->oobblock - mtd->eccsize);
this->calculate_ecc(mtd, NULL, &(ecc_code[3]));
for (i = 3; i < 6; i++)
oob_data[oob_config[i]] = ecc_code[i];
}
break;
/* Hardware ecc 3 byte / 512 byte data, write full page */
case NAND_ECC_HW3_512:
this->enable_hwecc(mtd, NAND_ECC_WRITE); /* enable hardware ecc logic */
this->write_buf(mtd, this->data_poi, mtd->oobblock);
this->calculate_ecc(mtd, NULL, &(ecc_code[0]));
for (i = 0; i < 3; i++)
oob_data[oob_config[i]] = ecc_code[i];
break;
/* Hardware ecc 6 byte / 512 byte data, write full page */
case NAND_ECC_HW6_512:
this->enable_hwecc(mtd, NAND_ECC_WRITE); /* enable hardware ecc logic */
this->write_buf(mtd, this->data_poi, mtd->oobblock);
this->calculate_ecc(mtd, NULL, &(ecc_code[0]));
for (i = 0; i < 6; i++)
oob_data[oob_config[i]] = ecc_code[i];
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* Write out OOB data */
this->write_buf(mtd, oob_data, mtd->oobsize);
/* Send command to actually program the data */
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
/* call wait ready function */
status = this->waitfunc (mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & 0x01) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
return -EIO;
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/*
* The NAND device assumes that it is always writing to
* a cleanly erased page. Hence, it performs its internal
* write verification only on bits that transitioned from
* 1 to 0. The device does NOT verify the whole page on a
* byte by byte basis. It is possible that the page was
* not completely erased or the page is becoming unusable
* due to wear. The read with ECC would catch the error
* later when the ECC page check fails, but we would rather
* catch it early in the page write stage. Better to write
* no data than invalid data.
*/
/* Send command to read back the page */
this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
/* Loop through and verify the data */
if (this->verify_buf(mtd, this->data_poi, mtd->oobblock)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
return -EIO;
}
/* check, if we have a fs-supplied oob-buffer */
if (oob_buf) {
if (this->verify_buf(mtd, oob_data, mtd->oobsize)) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
return -EIO;
}
} else {
if (eccmode != NAND_ECC_NONE) {
int ecc_bytes = 0;
switch (this->eccmode) {
case NAND_ECC_SOFT:
case NAND_ECC_HW3_256: ecc_bytes = (mtd->oobblock == 512) ? 6 : 3; break;
case NAND_ECC_HW3_512: ecc_bytes = 3; break;
case NAND_ECC_HW6_512: ecc_bytes = 6; break;
}
this->read_buf(mtd, oob_data, mtd->oobsize);
for (i = 0; i < ecc_bytes; i++) {
if (oob_data[oob_config[i]] != ecc_code[i]) {
DEBUG (MTD_DEBUG_LEVEL0,
"%s: Failed ECC write "
"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
return -EIO;
}
}
}
}
/*
* Terminate the read command. This is faster than sending a reset command or
* applying a 20us delay before issuing the next programm sequence.
* This is not a problem for all chips, but I have found a bunch of them.
*/
this->select_chip(mtd, -1);
this->select_chip(mtd, 0);
#endif
return 0;
}
/*
* Use NAND read ECC
*/
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
}
/*
* NAND read with ECC
*/
static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
{
int j, col, page, end, ecc;
int erase_state = 0;
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
struct nand_chip *this = mtd->priv;
u_char *data_poi, *oob_data = oob_buf;
u_char ecc_calc[6];
u_char ecc_code[6];
int eccmode;
int *oob_config;
// use chip default if zero
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
oob_config = oobsel->eccpos;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd ,FL_READING, &erase_state);
/* Select the NAND device */
this->select_chip(mtd, 0);
/* First we calculate the starting page */
page = from >> this->page_shift;
/* Get raw starting column */
col = from & (mtd->oobblock - 1);
end = mtd->oobblock;
ecc = mtd->eccsize;
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
/* Loop until all data read */
while (read < len) {
/* If we have consequent page reads, apply delay or wait for ready/busy pin */
if (read) {
if (!this->dev_ready)
udelay (this->chip_delay);
else
while (!this->dev_ready(mtd));
}
/*
* If the read is not page aligned, we have to read into data buffer
* due to ecc, else we read into return buffer direct
*/
if (!col && (len - read) >= end)
data_poi = &buf[read];
else
data_poi = this->data_buf;
/* get oob area, if we have no oob buffer from fs-driver */
if (!oob_buf) {
oob_data = &this->data_buf[end];
oob = 0;
}
j = 0;
switch (eccmode) {
case NAND_ECC_NONE: { /* No ECC, Read in a page */
static unsigned long lastwhinge = 0;
if ((lastwhinge / HZ) != (jiffies / HZ)) {
// printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
lastwhinge = jiffies;
}
this->read_buf(mtd, data_poi, end);
break;
}
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
this->read_buf(mtd, data_poi, end);
this->calculate_ecc(mtd, &data_poi[0], &ecc_calc[0]);
if (mtd->oobblock == 512)
this->calculate_ecc(mtd, &data_poi[256], &ecc_calc[3]);
break;
case NAND_ECC_HW3_256: /* Hardware ECC 3 byte /256 byte data: Read in first 256 byte, get ecc, */
this->enable_hwecc(mtd, NAND_ECC_READ);
this->read_buf(mtd, data_poi, ecc);
this->calculate_ecc(mtd, &data_poi[0], &ecc_calc[0]); /* read from hardware */
if (mtd->oobblock == 512) { /* read second, if pagesize = 512 */
this->enable_hwecc(mtd, NAND_ECC_READ);
this->read_buf(mtd, &data_poi[ecc], end-ecc);
this->calculate_ecc(mtd, &data_poi[256], &ecc_calc[3]); /* read from hardware */
}
break;
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512: /* Hardware ECC 3/6 byte / 512 byte data : Read in a page */
this->enable_hwecc(mtd, NAND_ECC_READ);
this->read_buf(mtd, data_poi, end);
this->calculate_ecc(mtd, &data_poi[0], &ecc_calc[0]); /* read from hardware */
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* read oobdata */
for (j = 0; j < mtd->oobsize; j++)
oob_data[oob + j] = this->read_byte(mtd);
/* Skip ECC, if not active */
if (eccmode == NAND_ECC_NONE)
goto readdata;
/* Pick the ECC bytes out of the oob data */
for (j = 0; j < 6; j++)
ecc_code[j] = oob_data[oob + oob_config[j]];
/* correct data, if neccecary */
ecc_status = this->correct_data(mtd, &data_poi[0], &ecc_code[0], &ecc_calc[0]);
/* check, if we have a fs supplied oob-buffer */
if (oob_buf) {
oob += mtd->oobsize;
*((int *)&oob_data[oob]) = ecc_status;
oob += sizeof(int);
}
if (ecc_status == -1) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
if (mtd->oobblock == 512 && eccmode != NAND_ECC_HW3_512) {
ecc_status = this->correct_data(mtd, &data_poi[256], &ecc_code[3], &ecc_calc[3]);
if (oob_buf) {
*((int *)&oob_data[oob]) = ecc_status;
oob += sizeof(int);
}
if (ecc_status == -1) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
}
readdata:
if (col || (len - read) < end) {
for (j = col; j < end && read < len; j++)
buf[read++] = data_poi[j];
} else
read += mtd->oobblock;
/* For subsequent reads align to page boundary. */
col = 0;
/* Increment page address */
page++;
}
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
/*
* Return success, if no ECC failures, else -EIO
* fs driver will take care of that, because
* retlen == desired len and result == -EIO
*/
*retlen = read;
return ecc_failed ? -EIO : 0;
}
/*
* NAND read out-of-band
*/
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
int i, col, page;
int erase_state = 0;
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Shift to get page */
page = ((int) from) >> this->page_shift;
/* Mask to get column */
col = from & 0x0f;
/* Initialize return length value */
*retlen = 0;
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd , FL_READING, &erase_state);
/* Select the NAND device */
this->select_chip(mtd, 0);
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page);
/*
* Read the data, if we read more than one page
* oob data, let the device transfer the data !
*/
i = 0;
while (i < len) {
int thislen = (mtd->oobsize - col) & (mtd->oobsize - 1);
if (!thislen)
thislen = mtd->oobsize;
thislen = min_t(int, thislen, len);
this->read_buf(mtd, &buf[i], thislen);
i += thislen;
col += thislen;
/* Delay between pages */
udelay (this->chip_delay);
}
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
/* Return happy */
*retlen = len;
return 0;
}
#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
/*
* Use NAND write ECC
*/
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
}
/*
* NAND write with ECC
*/
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
{
int page, ret = 0, oob = 0, written = 0;
struct nand_chip *this = mtd->priv;
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Do not allow write past end of device */
if ((to + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
if (NOTALIGNED (to) || NOTALIGNED(len)) {
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
// if oobsel is NULL, use chip defaults
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
/* Shift to get page */
page = ((int) to) >> this->page_shift;
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_WRITING, NULL);
/* Select the NAND device */
this->select_chip(mtd, 0);
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(this->read_byte(mtd) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Device is write protected!!!\n");
ret = -EIO;
goto out;
}
/* Loop until all data is written */
while (written < len) {
int cnt = mtd->oobblock;
this->data_poi = (u_char*) &buf[written];
/* We use the same function for write and writev */
if (eccbuf) {
ret = nand_write_page (mtd, this, page, &eccbuf[oob], oobsel);
oob += mtd->oobsize;
} else
ret = nand_write_page (mtd, this, page, NULL, oobsel);
if (ret)
goto out;
/* Update written bytes count */
written += cnt;
/* Increment page address */
page++;
}
out:
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
*retlen = written;
return ret;
}
static u_char ffchars[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/*
* NAND write out-of-band
*/
static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
int column, page, status, ret = 0;
struct nand_chip *this = mtd->priv;
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
int i;
#endif
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Shift to get page */
page = ((int) to) >> this->page_shift;
/* Mask to get column */
column = to & 0x1f;
/* Initialize return length value */
*retlen = 0;
/* Do not allow write past end of page */
if ((column + len) > mtd->oobsize) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_WRITING, NULL);
/* Select the NAND device */
this->select_chip(mtd, 0);
/* Reset the chip. Some chips (like the Toshiba TC5832DC found
in one of my DiskOnChip 2000 test units) will clear the whole
data page too if we don't do this. I have no clue why, but
I seem to have 'fixed' it in the doc2000 driver in
August 1999. dwmw2. */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(this->read_byte(mtd) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Device is write protected!!!\n");
ret = -EIO;
goto out;
}
/* Write out desired data */
this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page);
/* prepad 0xff for partial programming */
this->write_buf(mtd, ffchars, column);
/* write data */
this->write_buf(mtd, buf, len);
/* postpad 0xff for partial programming */
this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
/* Send command to program the OOB data */
this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
status = this->waitfunc (mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & 0x01) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
/* Return happy */
*retlen = len;
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
this->cmdfunc (mtd, NAND_CMD_READOOB, column, page);
/* Loop through and verify the data */
for (i = 0; i < len; i++) {
if (buf[i] != this->read_byte(mtd)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
}
#endif
out:
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
return ret;
}
/*
* NAND write with iovec
*/
static int nand_writev (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count,
loff_t to, size_t * retlen)
{
return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, 0));
}
static int nand_writev_ecc (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count,
loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
{
int i, page, len, total_len, ret = 0, written = 0;
struct nand_chip *this = mtd->priv;
/* Calculate total length of data */
total_len = 0;
for (i = 0; i < count; i++)
total_len += (int) vecs[i].iov_len;
DEBUG (MTD_DEBUG_LEVEL3,
"nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
/* Do not allow write past end of page */
if ((to + total_len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
// if oobsel is NULL, use chip defaults
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
/* Shift to get page */
page = ((int) to) >> this->page_shift;
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_WRITING, NULL);
/* Select the NAND device */
this->select_chip(mtd, 0);
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(this->read_byte(mtd) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Device is write protected!!!\n");
ret = -EIO;
goto out;
}
/* Loop until all iovecs' data has been written */
len = 0;
while (count) {
/*
* Check, if the tuple gives us not enough data for a
* full page write. Then we can use the iov direct,
* else we have to copy into data_buf.
*/
if ((vecs->iov_len - len) >= mtd->oobblock) {
this->data_poi = (u_char *) vecs->iov_base;
this->data_poi += len;
len += mtd->oobblock;
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
vecs++;
len = 0;
count--;
}
} else {
/*
* Read data out of each tuple until we have a full page
* to write or we've read all the tuples.
*/
int cnt = 0;
while ((cnt < mtd->oobblock) && count) {
if (vecs->iov_base != NULL && vecs->iov_len) {
this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
}
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
vecs++;
len = 0;
count--;
}
}
this->data_poi = this->data_buf;
}
/* We use the same function for write and writev !) */
ret = nand_write_page (mtd, this, page, NULL, oobsel);
if (ret)
goto out;
/* Update written bytes count */
written += mtd->oobblock;;
/* Increment page address */
page++;
}
out:
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Wake up anyone waiting on the device */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
*retlen = written;
return ret;
}
/*
* NAND erase a block
*/
static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
{
int page, len, status, pages_per_block, ret;
struct nand_chip *this = mtd->priv;
DECLARE_WAITQUEUE (wait, current);
DEBUG (MTD_DEBUG_LEVEL3,
"nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
/* Start address must align on block boundary */
if (instr->addr & (mtd->erasesize - 1)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
return -EINVAL;
}
/* Length must align on block boundary */
if (instr->len & (mtd->erasesize - 1)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
return -EINVAL;
}
/* Do not allow erase past end of device */
if ((instr->len + instr->addr) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_chip (this, mtd, FL_ERASING, NULL);
/* Shift to get first page */
page = (int) (instr->addr >> this->page_shift);
/* Calculate pages in each block */
pages_per_block = mtd->erasesize / mtd->oobblock;
/* Select the NAND device */
this->select_chip(mtd, 0);
/* Check the WP bit */
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
if (!(this->read_byte(mtd) & 0x80)) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Loop through the pages */
len = instr->len;
instr->state = MTD_ERASING;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks ! */
if (this->block_bad(mtd, page)) {
printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
//#ifndef CONFIG_MIZI // BUSHI
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
//#endif /* CONFIG_MIZI */
}
/* Send commands to erase a page */
this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
spin_unlock_bh (&this->chip_lock);
status = this->waitfunc (mtd, this, FL_ERASING);
/* Get spinlock, in case we exit */
spin_lock_bh (&this->chip_lock);
/* See if block erase succeeded */
if (status & 0x01) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Check, if we were interupted */
if (this->state == FL_ERASING) {
/* Increment page address and decrement length */
len -= mtd->erasesize;
page += pages_per_block;
}
/* Release the spin lock */
spin_unlock_bh (&this->chip_lock);
erase_retry:
spin_lock_bh (&this->chip_lock);
/* Check the state and sleep if it changed */
if (this->state == FL_ERASING || this->state == FL_READY) {
/* Select the NAND device again, if we were interrupted */
this->state = FL_ERASING;
this->select_chip(mtd, 0);
continue;
} else {
set_current_state (TASK_UNINTERRUPTIBLE);
add_wait_queue (&this->wq, &wait);
spin_unlock_bh (&this->chip_lock);
schedule ();
remove_wait_queue (&this->wq, &wait);
goto erase_retry;
}
}
instr->state = MTD_ERASE_DONE;
erase_exit:
/* De-select the NAND device */
this->select_chip(mtd, -1);
spin_unlock_bh (&this->chip_lock);
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;;
/* Do call back function */
if (!ret && instr->callback)
instr->callback (instr);
/* The device is ready */
spin_lock_bh (&this->chip_lock);
this->state = FL_READY;
wake_up (&this->wq);
spin_unlock_bh (&this->chip_lock);
/* Return more or less happy */
return ret;
}
/*
* NAND sync
*/
static void nand_sync (struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
DECLARE_WAITQUEUE (wait, current);
DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
retry:
/* Grab the spinlock */
spin_lock_bh (&this->chip_lock);
/* See what's going on */
switch (this->state) {
case FL_READY:
case FL_SYNCING:
this->state = FL_SYNCING;
spin_unlock_bh (&this->chip_lock);
break;
default:
/* Not an idle state */
add_wait_queue (&this->wq, &wait);
spin_unlock_bh (&this->chip_lock);
schedule ();
remove_wait_queue (&this->wq, &wait);
goto retry;
}
/* Lock the device */
spin_lock_bh (&this->chip_lock);
/* Set the device to be ready again */
if (this->state == FL_SYNCING) {
this->state = FL_READY;
wake_up (&this->wq);
}
/* Unlock the device */
spin_unlock_bh (&this->chip_lock);
}
/*
* Scan for the NAND device
*/
int nand_scan (struct mtd_info *mtd, int maxchips)
{
int i, nand_maf_id, nand_dev_id;
struct nand_chip *this = mtd->priv;
/* check for proper chip_delay setup, set 20us if not */
if (!this->chip_delay)
this->chip_delay = 20;
/* check, if a user supplied command function given */
if (this->cmdfunc == NULL)
this->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (this->waitfunc == NULL)
this->waitfunc = nand_wait;
if (!this->block_bad)
this->block_bad = nand_block_bad;
if (!this->select_chip)
this->select_chip = nand_select_chip;
if (!this->write_byte)
this->write_byte = nand_write_byte;
if (!this->read_byte)
this->read_byte = nand_read_byte;
if (!this->write_buf)
this->write_buf = nand_write_buf;
if (!this->read_buf)
this->read_buf = nand_read_buf;
if (!this->verify_buf)
this->verify_buf = nand_verify_buf;
/* Select the device */
this->select_chip(mtd, 0);
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
nand_maf_id = this->read_byte(mtd);
nand_dev_id = this->read_byte(mtd);
/* Print and store flash device information */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (nand_dev_id == nand_flash_ids[i].id && !mtd->size) {
mtd->name = nand_flash_ids[i].name;
mtd->erasesize = nand_flash_ids[i].erasesize;
mtd->eccsize = 256;
this->chipshift = nand_flash_ids[i].chipshift;
if (nand_flash_ids[i].page256) {
mtd->oobblock = 256;
mtd->oobsize = 8;
this->page_shift = 8;
} else {
mtd->oobblock = 512;
mtd->oobsize = 16;
this->page_shift = 9;
}
/* Try to identify manufacturer */
for (i = 0; nand_manuf_ids[i].id != 0x0; i++) {
if (nand_manuf_ids[i].id == nand_maf_id)
break;
}
printk (KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[i].name , mtd->name);
break;
}
}
if (!mtd->name) {
printk (KERN_WARNING "No NAND device found!!!\n");
return 1;
}
for (i=1; i < maxchips; i++) {
this->select_chip(mtd, i);
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
if (nand_maf_id != this->read_byte(mtd) ||
nand_dev_id != this->read_byte(mtd))
break;
}
if (i > 1)
printk(KERN_INFO "%d NAND chips detected\n", i);
mtd->size = (1 << this->chipshift) /* * i when we fix the rest of the code */;
/*
* check ECC mode, default to software
* if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
* fallback to software ECC
*/
this->eccsize = 256; /* set default eccsize */
switch (this->eccmode) {
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512:
if (mtd->oobblock == 256) {
printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
break;
} else
this->eccsize = 512; /* set eccsize to 512 and fall through for function check */
case NAND_ECC_HW3_256:
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
break;
printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
BUG();
case NAND_ECC_NONE:
printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
this->eccmode = NAND_ECC_NONE;
break;
case NAND_ECC_SOFT:
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* Initialize state, waitqueue and spinlock */
this->state = FL_READY;
init_waitqueue_head (&this->wq);
spin_lock_init (&this->chip_lock);
/* De-select the device */
this->select_chip(mtd, -1);
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
mtd->ecctype = MTD_ECC_SW;
mtd->erase = nand_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = nand_read;
mtd->write = nand_write;
mtd->read_ecc = nand_read_ecc;
mtd->write_ecc = nand_write_ecc;
mtd->read_oob = nand_read_oob;
mtd->write_oob = nand_write_oob;
mtd->readv = NULL;
mtd->writev = nand_writev;
mtd->writev_ecc = nand_writev_ecc;
mtd->sync = nand_sync;
mtd->lock = NULL;
mtd->unlock = NULL;
mtd->suspend = NULL;
mtd->resume = NULL;
mtd->owner = THIS_MODULE;
/* Return happy */
return 0;
}
EXPORT_SYMBOL (nand_scan);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Steven J. Hill <
sjhill@realitydiluted.com>, Thomas Gleixner <
tglx@linutronix.de>");
MODULE_DESCRIPTION ("Generic NAND flash driver code");